

第十一章 放射线的屏蔽防护

学习目标

- ◆掌握外照射的防护方法
- ◆掌握屏蔽厚度的确定方法
- ◆了解常用屏蔽防护材料
- ◆了解屏蔽防护材料的屏蔽性能和散射性能

根据源于体外或体内对人体产生的照射

电离辐射 外照射

医疗照射既有外照射,也有内照射

1.外照射防护的基本方法 距离防护 屏蔽防护

在实际防护工作中,三 种防护手段需联合运用、 合理调节

屏蔽防护是一种重要防护措施,直接关系到工作人员和公 众的受照剂量和安全

常用屏蔽材料的种类、性能以及屏蔽厚度的确定方法

2.内照射最根本的防护方法

尽量减少放射性物质进入人体的机会

包括制定合理的放射卫生管理制度保持良好的通风,密闭存放放射源安全防护操作和合理的个人防护等

第一节 外照射防护的基本方法

一、时间防护

定义: 在不影响工作质量的前提下,尽量缩短人员受照射的时间

原理: 受照剂量与时间成正比,缩短受照时间,即可达到降低剂量的目的

时间防护的措施:

- 1.减少在辐射场内停留的时间
- 2.工作人员在操作前应做好充分准备,操作中技术熟练、 准确、迅速以尽量缩短检查时间

- 3.普通X线透视,在暗室要求医生应充分做好眼睛的暗适应,以缩短观察时间
- 4. 尽量采用带影像增强的电视系统检查,在明室中观察,视觉敏感度高,诊断更加准确,同时缩短照射时间
- 5.X线摄影应优选投照条件,不出或少出废片,以减少重复照射
- 6.不得不在大剂量照射下工作时,应严格限制操作时间, 使受照剂量控制在规定的限值以下

二、距离防护

定义: 在不影响工作质量的前提下,尽量延长人员到 X线管和散射体的距离

原理:对于点状源,若不考虑空气对射线的吸收, x线按平方反比法则衰减,距离防护是十分有效的

三、屏蔽防护

定义:在放射源和人员之间,放置能有效吸收放射线的屏蔽材料,从而衰减或消除射线对人体的危害

在屏蔽防护中主要研究的问题 是屏蔽材料的选择和屏蔽厚度的确定

第二节 屏蔽材料

一、对屏蔽材料的要求

在选择屏蔽防护材料时,必须从材料的防护性能、结构性能、稳定性能和经济成本等方面综合考虑

(一)防护性能

是指材料对辐射的衰减能力,为达到某一预定的屏 蔽效果所需材料的厚度和重量

在屏蔽效果相当的情况下,成本差别不大,厚度最薄,重量最轻的材料最理想

考虑所选材料在衰减入射线的过程中不产生贯穿性的次级辐射,或即使产生,也非常容易吸收

对于γ射线和中子并存的混合辐射场,屏蔽材料应既屏蔽γ射线也屏蔽中子

(二)结构性能

具有很好的屏蔽性能,还应成为建筑结构的部分 屏蔽材料的<mark>结构性能</mark>,包括材料的物理形态、力学特性 和机械强度

(三)稳定性能

为保持屏蔽效果的持久性,要求屏蔽材料稳定性能好具有抗辐射的能力

处于水、汽、酸、碱、高温环境时,能耐高温、抗腐蚀

(四)经济成本

成本低、来源广泛、易加工,且安装、维修方便

二、常用屏蔽防护材料

(一)对β射线的屏蔽材料

防护β射线的材料:

铝、有机玻璃、混凝土等低原子序数的物质能将轫致辐射减小到最低限度。

(二)对x、y射线的屏蔽材料

屏蔽X、γ射线的材料:

- 1.一类是高原子序数的金属
- 2.一类是低原子序数的建筑材料

1. 铅原子序数82, 密度11350kg.m-3。

优点:具有耐腐蚀、在射线照射下不易损坏和强衰减X 线的特性,是一种良好的屏蔽防护材料

缺点: 价格贵,结构性能差,机械强度差,不耐高温, 具有化学毒性,对低能X线散射量较大

应用:例如,可用作X线管管套内衬防护层、防护椅、 遮线器、铅屏风和放射源容器等

常用含铅制品: 如铅橡皮、铅玻璃等

铅橡皮:制成铅橡胶手套、铅橡胶围裙、铅橡胶活动挂帘和各种铅橡胶个人防护用品等

铅玻璃:具有玻璃的透明特性,可做X线机透视荧光屏上的防护用铅玻璃,以及铅玻璃眼镜和各种屏蔽设施中的观察窗

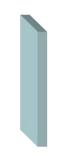
2. 铁原子序数26, 密度7800kg.m-3。

优点: 机械性能好, 价廉, 易于获得, 有较好的防护性能, 是防护性能与结构性能兼优的屏蔽材料

应用:通常多用于固定式或移动式防护屏蔽

对100kV以下的X线

3. 砖


优点: 价廉、通用、来源容易

对低kV产生的X线,砖的散射量较低,是屏蔽防护的好材料

在医用诊断X线能量范围内

厚(24cm)的实心砖墙=约有2mm的铅当量

要求: 在施工中应使砖缝内的砂浆饱满, 不留空隙

4. 混凝土

由水泥、粗骨料(石子)、砂子和水混合做成密度约为2300kg.m⁻³,含有多种元素

优点:成本低廉,有良好的结构性能

应用: 多用作固定防护屏障

特殊需要:通过加进重骨料(如重晶石、铁矿石、铸铁块等),制成密度较大的重混凝土

重混凝土的成本较高, 浇注时必须保证重骨料在整个防护屏障内的均匀分布

5. 水有效原子序数7.4,密度为1000kg.m-3

优点:成本低、透明、可流动

缺点: 结构性能和防护性能较差

应用: 以水池的形式贮存放射源

在强辐射的情况下,水会分解生成有害的气体

用于辐射屏蔽的水,以无离子水为好

(三)各种屏蔽材料厚度的折算

在现有建筑内安装X线机或其他放射源,在屏蔽计算时要考虑建筑物中原有的砖、灰浆、石料等建筑材料对屏蔽的贡献

建筑材料是由低原子序数物质构成的

可用经验公式将它们的实际厚度(d_{材料})折合成等效的混凝土 厚度(d_{混凝土})

$$\mathbf{d}_{\mathbb{R}\mathbb{A}^+} = \mathbf{d}_{\mathsf{M}\mathbb{A}}(\mathbf{\rho}_{\mathsf{M}\mathbb{A}} / \mathbf{\rho}_{\mathbb{R}\mathbb{A}^+}) \tag{11-1}$$

式中: $\rho_{\text{材料}}$ 、 $\rho_{\text{混凝土}}$ 分别为某建筑材料和混凝土的密度

表 11-1 X、 γ 射线常用屏蔽材料的密度(kg·m⁻³)

材。料	平均密度	材料	平均密度
		砂子灰泥	1540
普通混凝土	2350	花岗石	2650
重晶石混凝土	3600	石灰石	2460
钛铁矿骨料混凝土	3850	硫酸钡(天然重晶石)	4500
砂子(干燥、压实)	1600~1900	水	1000
泥土(干燥、压实)	1500	木头	500~900
砖(软)	1650	铅玻璃	a 1
砖(硬)	2050	普通铅玻璃	3270
瓷砖	1900	高密度铅玻璃	6220

(四)铅当量

为了便于比较各种防护材料的屏蔽性能,通常用铅当量作为比较标准

1. 铅当量:

把达到与一定厚度的某屏蔽材料相同屏蔽效果的铅层厚度,称为该一定厚度屏蔽材料的铅当量,单位:毫米铅(mmPb)。

说明材料的屏蔽性能还可以用比铅当量的概念

2.比铅当量:

是指单位厚度(mm)防护材料的铅当量

屏蔽材料的铅当量随射线的能量、材料厚度而变化,还与照射野的大小有关

防护材料的铅当量,必须说明是什么材料,厚度是多少,在多大射线能量下的铅当量

表 11-2 几种 X 线防护材料的比铅当量推荐值

防护材料	比铅当量*(mmPb·mm ⁻¹ 材料)	
	0.2~0.3	
铅玻璃	0.17~0.30	
含铅有机玻璃	0.01~0.04	
填充型安全玻璃(半流体复合物)	0.07~0.09	
橡胶类复合防护材料		
软质(做个人防护用品)	0.15~0.25	
硬质(做屏蔽板)	0.30~0.50	
玻璃钢类复合防护材料	0.15~0.20	
建筑用防护材料(防护涂料、防护砖及防护大理石)	0.1~0.3	

第三节 射线屏蔽厚度的确定方法

为防御放射线的危害,需要各种屏蔽防护,不论是机房的建筑等固有防护设施,还是工作人员、受检者或患者的个人防护用品,均需按一定要求对所用屏蔽材料的防护厚度进行计算

另外,剂量监督部门在进行防护监测中,以及使用单位 在考虑防护设备是否满足防护要求时,也需要进行必要的计 算,以判断屏蔽厚度是否能达到将照射量控制在允许范围的 目的

一、确定屏蔽厚度的依据

从放射线的衰减理论讲,经屏蔽后的放射线剂量永远不 会变成零

放射线的屏蔽设计,并不在于确定一个完全吸收放射线的物质层厚度,而是设法找到穿过屏蔽层的放射线剂量降低若干倍,并满足剂量限值的屏蔽层厚度

做到既安全可靠, 又经济合理

(一)当量剂量限值和最优化

医用射线的屏蔽计算:

根据剂量控制原则进行,工作人员和公众的受照剂量均不得超过规定的当量剂量限值,并按最优化原则处理

即在考虑了经济和社会因素后,使辐射照射保持在可以合理做到的最低水平

(二)屏蔽用途和距离

被屏蔽的射线分为有用射线、散射线和漏射线

- 1.初级防护屏:防御有用射线的屏蔽为初级防护屏
- 2.次级防护屏:防御散、漏射线的屏蔽为次级防护屏

应根据屏蔽用途、放射线源的类型、放射线源的能量、 放射线源的活度以及与放射源距离的远近,设计防护放射 线的各种防护设施和防护用品的防护厚度

(三)屏蔽材料的防护性能

不同种类、密度的屏蔽材料,它们的防护性能也不同,因此,对于同一屏蔽设施所需的屏蔽厚度也各不一样。

(四)工作负荷(W)

工作负荷(工作量)W,指周工作负荷,在数值上等于每周(W-1)X线机的曝光时间t(分钟)与管电流I(毫安)的乘积,即

W=It

单位: mA·min·w-1

W一般取数月或1年工作量的平均值

它表征x线机使用的频繁程度,同时也是输出量多少的一种标志

若是γ射线源,是指1m处线束(有用线束和漏射线)1周的空气吸收剂量,单位: Gy•m²•w-¹(也可用Sv代替Gy)

(五)居留因子(T)

在控制区外,只要有人居住、逗留,对辐射源均应设置足够的防护屏障,以使非工作人员受到的照射,控制在相应的限值以下

人们在控制区外逗留的时间只是辐射源总的开启时间的一个份额,这个份额称为居留因子

对于非职业人员来说

- 1.在工作区(如办公室、实验室、病房、值班室)、生活区以及附近建筑有人居住的地方,属全部居留区域,T=1
- 2.在走廊、休息室、电梯等处属部分居留区域,T=1/4
- 3.在候诊室、卫生间、楼梯等处属偶然居留区域,T=1/16

职业性照射人员所在区域的T值一般认为等于1

(六)利用因子(U)

人员受到的照射还与辐射束的朝向有关

在屏蔽设计中,把源开启时间内,辐射束对准所关心的那个方向所占时间的分数,称为这一方向对辐射束的利用因子

利用因子只是在源的朝向有变化时,对工作负荷进行 修正的一个因子,朝向不能改变的辐射源和非直接从源发 出的辐射则无须考虑此项修正

一般按屏蔽点被有用射线照射的情况 地板U=1;墙壁U=1/4;天花板U=1/16

二、屏蔽厚度的计算

屏蔽防护的目的在于通过设置合适厚度的屏蔽体,使 某一空间位置上,由辐射源造成的当量剂量不超过相应的 剂量控制限值

1. 透射量计算法

对X线的初级防护屏蔽厚度计算公式

$$B = \frac{Pd^2}{WUT} \tag{11-2}$$

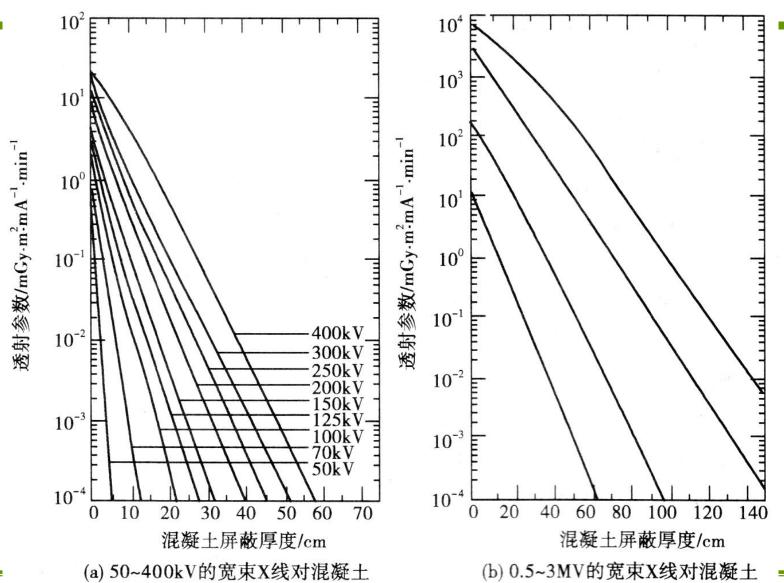
$$B = \frac{Pd^2}{WUT}$$

式中: B为有用射线的最大允许透射量 单位是mSv•m²•mA•min-¹(也可用mGy代替mSv)

P为周剂量限值 对工作人员: P=1mSv • w-1, 对公众: P=0.1mSv.w-1

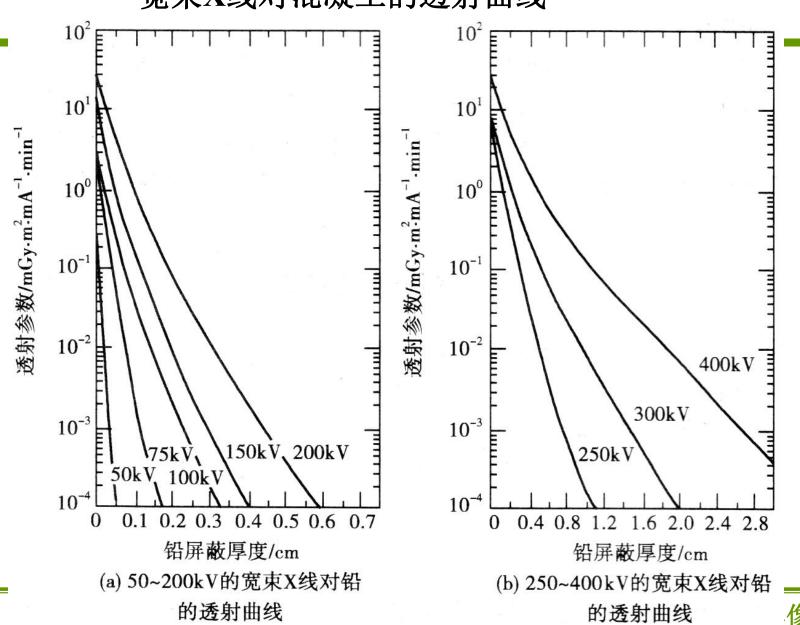
d为参考点到焦点的距离,单位: m

WUT为有效工作负荷,其中W为周工作负荷单位: mA·min·w-1


U为利用因子
T为居留因子

用(11-2)式求出透射量后,可从图11-1或图11-2中查得用混凝土或用铅作屏蔽材料时所需的屏蔽厚度

宽束X线对混凝土的透射曲线


的透射曲线

(b) 0.5~3MV的宽束X线对混凝土 的透射曲线

影像技术专业

宽束X线对混凝土的透射曲线

像技术专业

【例1】一台工作电压为200kV的X线机,管电流30mA,每周工作5天,每天工作4小时,参考点与源的距离为3m,试计算初级防护屏混凝土屏蔽墙厚度是多少?若用铅,厚度又是多少?(设T=1, U=1/4)。

解: W=It=30×4×5×60mA.min.w-1=36000mA.min.w-1 WUT=36000×1 / 4×1mA.min.w-1=9000mA.min.w-1 若取3 / 10周剂量限值作为屏蔽计算时的控制水平,则P=0.3mSv.w-1 由公式(11-2)有

$$B = \frac{Pd^{2}}{WUT} = \frac{0.3 \times 3^{2}}{9000} mSv \cdot m^{2} \cdot mA^{-1} \cdot \min^{-1}$$
$$= 3 \times 10^{-4} mSv \cdot m^{2} \cdot mA^{-1} \cdot \min^{-1}$$

由图11—1(a)查得混凝土的厚度为36cm,由图11—2(a)查得铅的厚度为0.52cm。

若考虑2倍安全系数,可分别加上一个半值层厚度。

从表11一3中查得200kV时混凝土和铅的半值层厚度分别为2.6cm和0.042cm,

则实际所需混凝土厚度为36cm+2.6cm=38.6cm; 铅的厚度为0.52cm+0.042cm=0.562cm。

表 11-3 不同管电压下铅和混凝土的半价层(cm)

管电压(kV)	铅的半价层	混凝土的半价层	管电压(kV)	铅的半价层	混凝土的半价层
50	0.005	0.4	200	0.042	2.6
70	7. 42	1.0mg	250	0.086	2.8
75	0.015	property and the second state of the second	300	0.17	3.0
100	0.025	1.6	400	0.25	3.0
125	"- 34 31 <u> 31</u>	1.9	500	0.31	3.6
150	0.029	2.2		r-1	Table * Py Transport

2. 查表法

初、次级防护屏厚度的确定也可用查表法得到。表11-4和表11-5是在符合周剂量限制的前提下,通过理论计算和实际测量得到的铅和混凝土的初、次级防护厚度。

表 11-4 有用射线在周剂量限值以下的防护厚度

管电压 (kV)	有效工作负荷 (mA·min·w ⁻¹) -	<u>H</u>	方源相距了 所需铅厚	与源相距下列距离时所需 混凝土厚度(cm)					
(IX V)	(IIII W)	1m	2m	4m	8m	1m	2m	4m	8m
50	500	0.04	0.03	0.02	0.01	3.4	2.5	1.6	0.9
	125	0.03	0.02	0.01	0.01	2.5	1.6	0.9	0.4
	30	0.02	0.01	0.01	- 91	1.6	0.9	0.4	002
	8	0.01	0.01	<u> </u>		0.9	0.4		
75	500	0.10	0.08	0.05	0.03	9.7	7.4	5.0	3.0
	125	0.08	0.05	0.03	0.02	7.4	5.0	3.0	1.2

管电压 (kV) (有效工作负荷 (mA·min·w ⁻¹)		源相距下		与源相距下列距离时所需 混凝土厚度(cm)				
(11)		1m	2m	4m	8m	1m = 1	2m	4m - 1	8m
	30	0.05	0.03	0.02	X ## T XX	5.0	3.0	1.2	
	8	0.03	0.02	nma H	With the later	3.0	1. 2		
100	1000	. 24	0.19	0.14	0.09	17.0	13.6	10.4	7.1
	250	. 19	0.14	0.09	0.05	13.6	10.4	7.1	4.1
	60	. 14	0.09	0.05	0.03	10.4	7.1	4.1	1.5
	16). 14	0.05	0.03		7.1	4.1	1.5	
150	1000	. 30	0.25	0.19	0.14	25.5	21.5	16.8	12.3
	250). 25	0.19	0.14	0.09	21.1	12.3	12.3	8.0
dim.	Am 60 in welm'). 19	0.14	0.09	0.05	16.8	8.0	8.0	4.0
	16). 14	0.09	0.05	0.02	12.3	4.0	4.0	0.8
200	40000	0.66	0.58	0.51	0.43	46.3	41.0	35.9	30.6
ATAL VAO	10000). 58	0.51	0.43	0.35	41.0	35. 9	36.0	25.4
	2500	51	0.43	0.35	0.28	35.5	30.6	25.4	20.1
	625	0.43	0.35	0.28	0.20	30.6	25. 4	20.1	15.0
250	40000	1.26	1.09	0.91	0.74	51.8	46.5	41.0	35.4
	10000	1.09	0.91	0.74	0.59	46.5	41.0	35.4	29.8
無名 坐的	2500	0.91	0.74	0.59	0.44	41.0	35. 4	29.8	24. 1
	625	0.74	0.59	0.44	0.31	35. 4	29.8	24.1	18.6

影像技术专业

表 11-5 散漏射线在周剂量限值以下的防护厚度*

管电压 (kV)	有效工作负荷 (mA·min·w ⁻¹			下列距离时 厚度(cm)	1.1. e.f.	与源相距下列距离时 所需混凝土厚度(cm)				
(KV)	(IIIA · IIIII · W	1m	2m	4m	8m	1m (1)	2m	4m	8m	
50	500	0.02	0.01	0	0	1.0	0.3	0	0	,
	125	0.01	0	0	0	0.3	0	0	0	
75	500	0.06	0.02	0.01	0	3.1	1.1	0.1	0	
	125	0.02	0.01	0) = 0 =	1.1	0.1	0	0	
	30	0.01	0	0	0	0.1	0	0	0 -	
100	1000	0.08	0.04	0.02	0	5.5	2.7	0.3	0	
	250	0.04	0.02	0	0	2.7	0.3	0	0	
	60	0.02	0	0	0	0.3	0	0	0	
150	1000	0.11	0.06	0.03	0	8.9	4.9	1.3	0	
	250	0.06	0.03	O	0	4.9	1.3	0	0	
	60	0.03	0	0	0	1.3	0	0	0	
200	40000	0.40	0.32	0.24	0.16	26.9	21.6	16.4	11.3	
	10000	0.32	0.24	0.16	0.09	21.9	16.4	11.3	6.4	
	2500	0.24	0.16	0.09	0.04	16.4	11.3	6.4	2.0	I
	625	0.16	0.09	0.04	0	11.3	6.4	2.0	0	

管电压 (kV)	有效工作负荷 (mA·min·w ⁻¹)			下列距离印 厚度(cm)	寸	与源相距下列距离时所需 混凝土厚度(cm)				
		- 1m	2m	4m	8m	lm.	2m	4m	8m	
250	40000	0.78	0.61	0.45	0.28	30.6	25.1	19.4	13.9	
	10000	0.61	0.45	0.28	0.14	25.1	19.4	13.9	8.5	
	2500	0.45	0.28	0.14	0.05	19.4	13.9	8. 5	3.4	
1	625	0.28	0.14	0.05	0	13.9	8.5	3. 4	0	

注: *: 计算本表考虑的典型条件是: x线管焦点到散射体的距离为50cm; 90。方向散射: 有用射线入射到散射体的照射量率与散射到1m处的照射量率之比是0.1%; 50~150kV时, 距焦点1m处的漏射线为1mGy.h-1, 在200~400kV时为10mGy.h-1; 未考虑空气造成的衰减。

钴-60宽束γ线穿过密度为11.35g.cm-3的铅时的透射曲线,如图11-3;钴-60宽束γ线穿过密度为2.35g.cm-3的混凝土时的透射曲线,如图11—4。

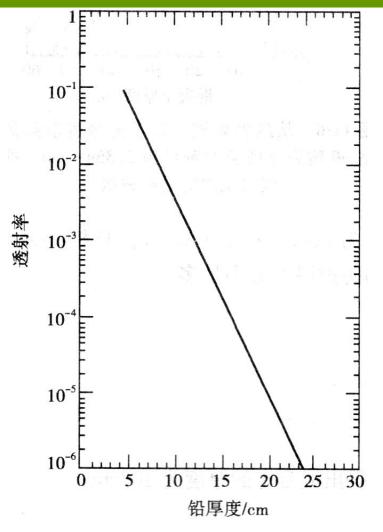


图 11-3 钴-60 宽束 γ 线穿过密度为 11.35g·cm⁻³的铅时的透射曲线

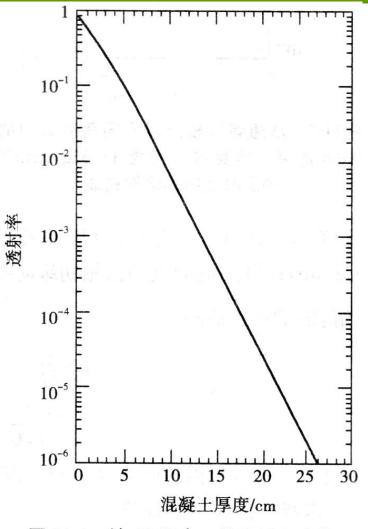


图 11-4 钴-60 宽束 γ 线穿过密度为 $2.35g \cdot cm^{-3}$ 的混凝土时的透射曲线

【例2】有一台200mA X线机,最高管电压为150kV,平均周工作量是1000mA.min.W-1,焦点离防护墙的距离为2m,求初级和次级防护墙的厚度各是多少?

解: 从表11-4和表11-5中分别查得

初级混凝土防护墙的厚度=21.5cm

次级混凝土防护墙的厚度=4.9cm

(二)γ射线远距离治疗室的屏蔽计算

1. 初级防护层屏蔽计算

计算有用线束的透射量,同样可以用公式(11-2)计算

$$B = \frac{Pd^2}{WUT} \tag{11-2}$$

式中: B为y射线的透射量,相应于B的屏蔽厚度可由 图11-3和11-4中的透射曲线读出

w为有用线束的工作负荷,单位是Gy.m².w-1

其余物理量的意义同公式(11-2)

从患者体模上以不同角度散射的钴-60宽束γ线穿过密度为11.35g.cm⁻³。的混凝土时的透射曲线,见图11-5。

从患者体模上以不同角度散射的钴-60宽束γ线穿过密度为2.35 g.cm-3的混凝土时的透射曲线,见图11-6。

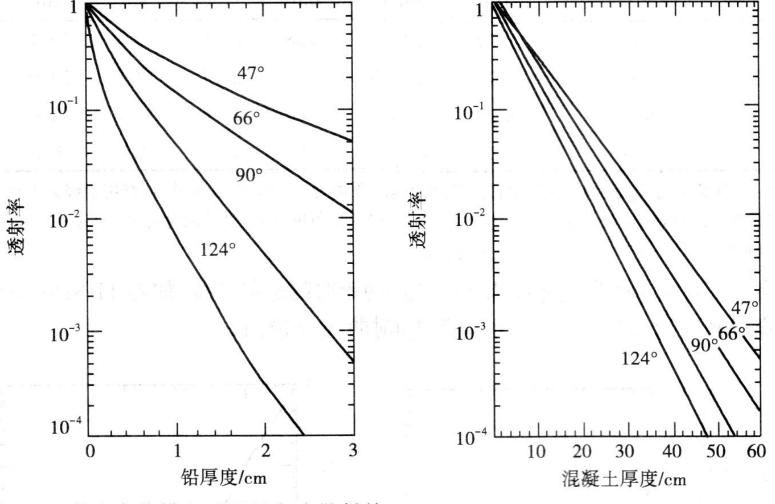


图 11-5 从患者体模上以不同角度散射的图 11-6 从患者体模上以不同角度散射的 钴-60 宽束 γ 线穿过密度为 11.35g・cm⁻³ 钴-60 宽束 γ 线穿过密度为 2.35g・cm⁻³ 的 的混凝土时的透射曲线 混凝土时的透射曲线

【例3】某⁶⁰Co治疗机,每周有效工作负荷为600Sv.m2.w⁻¹治疗机操纵台距⁶⁰Co源3m,计算用混凝土和铅做初级防护屏时的防护厚度分别是多少?

解: 取P=1mSv.w-1

$$B = \frac{Pd^2}{WUT} = \frac{1 \times 10^{-3} \times 3^2}{600} mSv \cdot m^2 \cdot mA^{-1} \cdot min^{-1}$$

$$=1.5\times10^{-5} mSv \cdot m^2 \cdot mA^{-1} \cdot min^{-1}$$

查图11—3得出 铅的厚度=20cm

查图11-4得出 混凝土的厚度=108cm。

2. 次级防护层屏蔽计算

(1)散射线的屏蔽计算:

用公式(11-3)计算散射线的透射量,从图11-5和11-6的透射曲线中读出屏蔽厚度。散射线的透射量

$$B_{s} = \frac{100Pd_{s}^{2}}{WTS}$$
 (11-3)

式中,B,为散射线的透射量;

d_s是从散射体到考察点的距离,单位: m; S为入射辐射被散射到1m处的百分吸收剂量率, 其值可从表11一6中查出;

W为有用线束的工作负荷,单位: Gy.m².w-¹ 若γ源到散射体之间的距离不是1m,应该按平方反比 法则加以修正; P、T含义同(11-2)式。

表 11-6 ⁶⁰Co γ 射线被 400cm² 的等效体模散射至 1m 处的吸收剂量率的百分数

测量条件	15	30	45	60	90	120	135	150
条件一*		_	0.18	0.14	0.07	0.05	0.04	
条件二**	0.48	0.27	0.14	0.08	0.04	0.03	0.02	0.02

注: *:椭圆形体模,长轴 36cm,短轴 20cm,照射野面积和散射角参考体模中心,线束沿长轴方向; **:照射于球形体模,等效体模质量为 0.9~30kg。

(2)漏射线的屏蔽计算:

γ射线漏射线的屏蔽计算,可用下列公式计算漏射线的 N_{TVT}值,用该值乘以表11-7给出的数值即为该漏射辐射的屏蔽厚度。

$$N_{TVT} = \log_{10} \frac{W_L T}{d^2 P}$$

式中, W_L 为距源1m处漏射 γ 辐射在空气中每周的比释动能率;T、d、P的含义同公式(11-2)

表 11-7 ⁶⁰Co 宽束 γ 射线的近似半价层和十分之一价层

材料	半价层(cm)	十分之一价层(cm)
铅	1.2	4.0
混凝土	6.1	20.3

